menu

TensorFlow Ubuntu Configuration

TensorFlow环境安装与配置


环境
  • Ubuntu16.04+Python3.6+TensorFlow1.7+CUDA9.1+cuDNN7.1+Anaconda3.5

配置Ubuntu静态IP地址
  • sudo gedit /etc/network/interfaces
      interfaces(5) file used by ifup(8) and ifdown(8)
      auto enp6s0
      iface enp6s0 inet static
      address 192.168.0.26
      netmask 255.255.255.0
      broadcast 192.168.0.255
      gateway 192.168.0.1
    
  • sudo gedit /etc/resolv.conf
      nameserver 114.114.114.114
    
  • sudo /etc/init.d/networking restart
  • sudo gedit /etc/resolvconf/resolv.conf.d/base(如无效使用)
      nameserver 114.114.114.114
    

TensorFlow环境安装与配置

1.安装依赖包
  • sudo apt-get update
  • sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
  • sudo apt-get install –no-install-recommends libboost-all-dev
  • sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
  • sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
  • sudo apt-get install git cmake build-essential
2.安装显卡驱动

显卡驱动下载地址:显卡驱动下载地址官网

  • sudo gedit /etc/modprobe.d/blacklist-nouveau.conf
      blacklist nouveau  
      options nouveau modeset=0 
    
  • sudo update-initramfs -u
  • lsmod grep nouveau
  • sudo apt-get remove nvidia-*
  • sudo apt-get autoremove
  • sudo nvidia-uninstall
  • reboot
  • Ctrl+Alt+F1
  • sudo service lightdm stop
  • sudo bash NVIDIA-Linux-x86_64-390.48.run -no-x-check -no-nouveau-check -no-opengl-files
  • sudo service lightdm restart
  • nvidia-settings
3.配置环境变量
  • sudo gedit ~/.bashrc
      export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH  
      export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
    
4.安装 CUDA 9.1
  • sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
  • sudo sh cuda_9.1.85_387.26_linux.run –no-opengl-libs
  • sudo gedit ~/.bashrc
      export PATH=/usr/local/cuda/bin:$PATH
      export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH  
    
  • source ~/.bashrc
  • cd /usr/local/cuda-9.1/samples/1_Utilities/deviceQuery
  • sudo make
  • ./deviceQuery
5.安装cuDNN v7
  • cd cuda/include
  • sudo cp cudnn.h /usr/local/cuda/include/ #复制头文件
  • cd ../lib64
  • sudo cp lib* /usr/local/cuda/lib64/
  • cd /usr/local/cuda/lib64/
  • sudo rm -rf libcudnn.so libcudnn.so.7
  • sudo ln -s libcudnn.so.7.0.5 libcudnn.so.7
  • sudo ln -s libcudnn.so.7 libcudnn.so
  • sudo apt-get install vim-gtk
  • sudo vim /etc/ld.so.conf.d/cuda.conf
      /usr/local/cuda/lib64
    
  • sudo ldconfig
  • sudo ldconfig -v
  • nvcc -V

Ubuntu16.04安装Anaconda3.5
  • sudo bash Anaconda3-5.1.0-Linux-x86_64.sh
  • anaconda-navigator
  • sudo gedit ~/.bashrc(或者sudo vim /etc/profile)
     export PATH="/home/ubuntu/anaconda3/bin:$PATH"
    
  • source ~/.bashrc(或者:source /etc/profile)
  • echo $PATH
  • python –version
  • conda –version
  • conda list
  • conda info –envs
  • conda update -n base conda(或者:conda update conda)
  • conda create -n tensorflow36 python=3.6
  • conda remove -n tensorflow36 –all
  • conda config –add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  • conda config –set show_channel_urls yes
  • conda install numpy
  • source activate tensorflow36(解除环境:source deactivate)
  • sudo apt install python3-pip(强制升级Python3:python3 -m pip install –upgrade pip –force-reinstall)
  • pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ https://mirrors.tuna.tsinghua.edu.cn/tensorflow/linux/gpu/
  • python
      import tensorflow as tf
      hello=tf.constant('hello,Tensorflow')
      sess=tf.Session()
      print(sess.run(hello))
    
  • pip3 install tf_nightly-1.6.0.dev20180114-cp36-cp36m-manylinux1_x86_64.whl

查看已安装TensorFlow版本和安装路径
  • python
    import tensorflow as tf
    tf.\__version__
    tf.\__path__
    

卸载安装tensorflow

查看tensorflow版本

  • sudo pip show tensorflow

卸载

  • sudo pip uninstall protobuf
  • sudo pip uninstall tensorflow

安装

  • sudo pip install –upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0-cp36-none-linux_x86_64.whl

安装pip

  • sudo apt-get install python-pip python-dev build-essential
  • sudo pip install –upgrade pip
  • sudo -H python -m pip install –upgrade pip

使用pip出现

Traceback (most recent call last):
File "/usr/bin/pip3", line 9, in <module>
from pip import main
ImportError: cannot import name 'main'
  • sudo python -m pip uninstall pip && sudo apt install python-pip –reinstall

在ubuntu中使用pip报一下错误

/usr/bin/pip: No such file or directory pip can no longer be found:
  • which pip
  • pip
  • type pip
  • hash -r

Anaconda的jupyter notebook中配置tensorflow
ImportError : No Moduled Name "tensorflow
  • 在/home/ubuntu/anaconda3/lib/python3.6/site-packages新建path.pth,添加:
    /home/ubuntu/anaconda3/envs/tensorflow36/lib/python3.6/site-packages
    
jupyter notebook下python2和python3共存

如果安装了python2和者python3:

  • python2 -m pip install ipykernel
  • python2 -m ipykernel install –user
  • python3 -m pip install ipykernel
  • python3 -m ipykernel install –user

jupyter notebook下python2和python3共存


Ubuntu16.04安装pycharm

pycharm下载地址

  • sh ./pycharm.sh # 在解压缩文件目录的bin/下执行
Ubuntu16.04安装Teamviewer

Teamviewer下载地址

  • sudo apt-get -f install
  • sudo dpkg -i teamviewer_13.1.8286_amd64.deb
  • teamviewer
Ubuntu16.04安装搜狗拼音输入法(中文输入法)
Ubuntu 16.04安装谷歌 Chrome 浏览器

查看显卡驱动
  • lshw -c video 查看configurure有driver字样
  • nvidia-smi
查看GPU型号
  • lspci | grep -i vga
查看NVIDIA驱动版本
  • sudo dpkg –list | grep nvidia-*
查看磁盘空间
  • sudo fdisk -l
  • df -h
1.查看内存的插槽数,已经使用多少插槽。每条内存多大,已使用内存多大
  • sudo dmidecode | grep -P -A5 “Memory\s+Device” | grep Size | grep -v Range
2.查看内存支持的最大内存容量
  • sudo dmidecode | grep -P ‘Maximum\s+Capacity’
3.查看内存的频率
  • sudo dmidecode | grep -A16 “Memory Device”
  • sudo dmidecode | grep -A16 “Memory Device” | grep ‘Speed’

which、find、whereis、locate命令
  • which 只能寻找可执行文件 ,并在PATH变量里面寻找
  • find 是直接在硬盘上搜寻,功能强大,但耗硬盘,一般不要用
  • whereis 从linux文件数据库(/var/lib/slocate/slocate.db)寻找,所以有可能找到刚刚删除,或者没有发现新建的文件,全部匹配
  • locate 同上,不过文件名是部分匹配
挂载U盘

挂载

  • sudo mkdir /mnt/usb
  • df
  • sudo mount /dev/sda1 /mnt/usb
  • cd /mnt/usb

卸载

  • sudo umount /mnt/usb
  • sudo umount /dev/sda1 /mnt/usb

相关问题及解决办法

修改root密码
  • sudo passwd root
用户名ubuntu不在sudoers文件中,此事将被报告
  • sudo gedit /etc/sudoers
    ubuntu  ALL=(ALL:ALL) ALL
    
Ubuntu16.04 下创建新用户yang并赋予sudo权限
  • sudo adduser username
  • sudo gedit /etc/sudoers
    yang  ALL=(ALL:ALL) ALL
    
Ubuntu开机无法进入系统问题(NVIDIA显卡驱动相关)
  • sudo vim /etc/default/grub GRUB_CMDLINE_LINUX_DEFAULT=”quiet splash”改成GRUB_CMDLINE_LINUX_DEFAULT=”quiet splash nomodeset
  • sudo update-grub

Ubuntu开机无法进入系统问题(NVIDIA显卡驱动相关)

Ubuntu16.04禁止系统自动更新

Ubuntu 16.04 用户登录界面死循环(NVIDIA 驱动所致)

解决方法1

  • CTRL+ALT+F1进入文本模式
  • sudo apt-get remove nvidia-*
  • sudo apt-get autoremove
  • sudo nvidia-uninstall
  • reboot
  • Ctrl+Alt+F1
  • sudo service lightdm stop
  • sudo bash NVIDIA-Linux-x86_64-390.48.run -no-x-check -no-nouveau-check -no-opengl-files

Ubuntu 16.04 用户登录界面死循环问题的解决

解决方法2

  • sudo add-apt-repository ppa:graphics-drivers/ppa
  • sudo apt-get update
  • sudo apt-get remove –purge nvidia-*
  • sudo apt-get autoremove #特别重要
  • sudo apt-get install -f #特别重要
  • sudo reboot
  • sudo apt-get install nvidia-384

解决:Ubuntu16.04循环登录


ubuntu重装系统

问题:nouveau 000:01:00.0: fifo: SCHED_ERROR 08

  • BIOS选择启动项到U盘,华硕主板电脑启动电脑,按F8进入。 显示Install Ubuntu,先不要点Install Ubuntu这个选项。按F6,再 按e键,进入编辑页面,在倒数第二行中,ro quiet splash后面添加nomodeset,这样进入系统后不会因为独显驱动问题而导致黑屏了。
  • 重启,狂按ESC,进入到grub,按e,进入编辑。导数第二行找到quiet splash, 将quiet splash $vt_handoff改为quiet splash nomodesetctrl+x重启。

待完善(To be added~)


参考文献

返回顶部

Thanks

for your visit~

微信搜索公众号: qingqiany
wechat qingqiany